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Atomistic description of protein fibril formation has been elusive
due to the complexity and long time scales of the conformational
search. Here, we develop a multiscale approach combining nu-
merous atomistic simulations in explicit solvent to construct
Markov State Models (MSMs) of fibril growth. The search for the
in-register fully bound fibril state is modeled as a random walk on
a rugged two-dimensional energy landscape defined by β-sheet
alignment and hydrogen-bonding states, whereas transitions in-
volving states without hydrogen bonds are derived from kinetic
clustering. The reversible association/dissociation of an incoming
peptide and overall growth kinetics are then computed from MSM
simulations. This approach is applied to derive a parameter-free,
comprehensive description of fibril elongation of Aβ16–22 and
how it is modulated by phenylalanine-to-cyclohexylalanine
(CHA) mutations. The trajectories show an aggregation mecha-
nism in which the peptide spends most of its time trapped in
misregistered β-sheet states connected by weakly bound states
twith short lifetimes. Our results recapitulate the experimental ob-
servation that mutants CHA19 and CHA1920 accelerate fibril elonga-
tion but have a relatively minor effect on the critical concentration
for fibril growth. Importantly, the kinetic consequences of mutations
arise from cumulative effects of perturbing the network of produc-
tive and nonproductive pathways of fibril growth. This is consistent
with the expectation that nonfunctional states will not have
evolved efficient folding pathways and, therefore, will require a
random search of configuration space. This study highlights the
importance of describing the complete energy landscape when
studying the elongation mechanism and kinetics of protein fibrils.
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Aggregation of misfolded proteins has been implicated in
many devastating and currently incurable medical disorders

such as Alzheimer’s and prion diseases (1–3). In these diseases,
the misfolded protein forms insoluble fibrils as well as various
soluble oligomers. Although the state involved in disease pro-
gression is still a matter of dispute (4–8), it is clear that the
population of the different aggregated states is a function of
the kinetic processes governing their formation. In particular, the
fibril state serves as an important sink of protein mass and may
be related to distinct clinical outcomes (9). In addition, under-
standing the mechanism of β-sheet rich assemblies may also be
valuable for the design of biomaterials (2, 10).
Experiments have shown that amyloid β (Aβ) fibrils grow

one monomer a time, which has been described by a two-step
“Dock and Lock” model (11–14). In this model, an Aβ
monomer rapidly adheres to a preformed fibril (dock step),
followed by a slow lock step where the unstructured incoming
peptide adopts an extended β-conformation (8, 11, 15). However,
further experimental dissection of the aggregation process is
hindered by numerous metastable substates that interconvert
rapidly (3). Molecular dynamics (MD) simulation is a powerful
tool that can provide a detailed molecular picture to comple-
ment experiments (16–18). However, the experimental elongation
rate is roughly one layer per second (19, 20), which is not

currently feasible with atomistic simulations. While this time
scale is accessible to coarse-grained approaches (18, 21–25), the
reduced resolution of these models makes it challenging to
distinguish sidechains with similar properties and capture
mutational effects.
The long time scale of amyloid aggregation contrasts with

native protein folding where secondary structure formation oc-
curs on a submicrosecond time scale. To explain this difference,
we presented an analytic theory showing that aggregation kinetics
were consistent with an ergodic search of β-sheet alignments (26).
By identifying the slowest step in the aggregation process, this
theory suggests that high-resolution simulations can be realized by
accelerating the alignment search. The proof of concept for this
new approach was demonstrated in a paper showing how the
alignment search could be captured using a Markov State Model
(MSM) defined by the two reaction coordinates identified by the
theory (27). That work successfully recapitulated nonadditive ef-
fects of hydrophobic mutations but was incomplete in several
ways. Key steps in the process, including the initial binding, pep-
tide backbone conformational reconfiguration, and transitions
between alignments, were either lumped into “black box” states in
the MSM or absorbed into free parameters. Secondly, the implicit
solvent model, utilized to allow direct comparison between the
MSM and brute force simulations, did not allow a direct compari-
son of the simulation and experiments. As a result, this “minimalist”
treatment lacks quantitative predictive power and failed to provide
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a mechanistic explanation of the curious nonadditive mutation
effects.
The present work addresses all of these deficiencies. First, we

show how the two-dimensional (2D) MSM can be integrated as
the core of a larger MSM describing the full aggregation process.
This allows us to compute aggregation rates without free pa-
rameters and extensively sample states not included in the original
theory. The full MSM shows a detailed mechanism of assembly
where weakly bound states serve as a hub connecting the assembly
pathway to long-lifetime trapped states. Secondly, due to the
highly parallelizable nature of our MSM, we have been able to
transition to an explicit solvent model, allowing for direct calcu-
lation of aggregation rates. Finally, we explain how the unsatisfy-
ing finding that mutation effects are the unpredictable effect of
small perturbations is, in fact, the expected outcome within the
funnel model of protein folding.

Results
Fibril Elongation Consists of Diffusion, Nonspecific Binding, and
β-Alignment Stages. We have developed a computational frame-
work that can systematically explore the search over β-sheet
alignments (26, 27). In this framework, the number of hydro-
gen bonds (H-bond) and alignment (referred to as the “registry”)
between an incoming peptide and the existing fibril are used as
reaction coordinates. The process of exploring registries is then
converted to a series of H-bond formation and breakage events.
Since H-bond formation and breakage occur on the nanosecond
time scale, targeted simulations can be deployed to calculate the
rates of these events and measure how they are affected by
protein sequence and/or environmental factors. The microscopic
rates can be then used to construct MSMs for simulating the
overall growth process. This is similar to the application of MSMs
for protein folding (28–34). The difference is that in our previous
work, the state space was obtained from the analytic theory, while
traditional applications of MSMs obtain states from kinetic clus-
tering of simulation trajectories. In the present work, we combine
the strengths of the two approaches by using the H-bond state
space to sample the slow search over registries and atomistic
simulations followed by kinetic clustering to resolve states outside
of the H-bonding space.

Our model is shown schematically in Fig. 1. The elongation
process starts from an unstructured monomer in the bulk solvent,
which “docks” to a preformed fibril core and “locks” as a new
structured layer (11, 12, 15). The process can be divided into
three stages. The first stage is a diffusion-controlled process, in
which the incoming peptide migrates from solvent to a separa-
tion distance b (35, 36). This stage is similar to Brownian dy-
namics treatments of diffusion-controlled reactions (35, 36).
Simulations were started from a monomer at the b surface, and
the rates of monomers reaching the fibril surface or an escape
distance q were analyzed. If the monomer reaches the q surface,
the monomer is considered to have returned to the bulk solvent.
The second stage describes nonspecific interactions between the
monomer and fibril, defined as those states without either in-
register or misregistered backbone H-bonds (nonregistered
states; blue box in Fig. 1). This stage ends when the incoming
peptide either forms backbone H-bonds with the core peptide,
thereby entering the registered stage (third stage) or dissociates
from the fibril surface, returning to the unbound state (the q
surface). The third stage represents the peptide’s exploration of
β-strand alignments by forming or breaking H-bonds (green box
in Fig. 1). The attempt ends when the molecule either forms a
full set of H-bonds in the correct registry (red arrow in Fig. 1,
Right) or falls off the end of the fibril (returning to nonregistered
states). By combining the three stages, our model describes the
complete process of fibril growth. The net growth rate can be
expressed as

kgrowth = kon − koff = Pcommittor

τdiff + τresidence
− 1
τoff

, [1]

in which τdiff is the average time for a monomer to diffuse from
bulk solvent to the b surface, τresidence is the average time re-
quired for a molecule entering the b surface to reach either the
fully bound state or return to a separation distance q, τoff repre-
sents the average time required for a fully bound peptide to
reach the dissociated state (q surface), and Pcommittor is the prob-
ability that an incoming peptide starting from the b surface
becomes incorporated into the fibril in a fully bound in-register
state. Although mathematically similar to the Michaelis–Menten
equation, the two rate constants appearing in the first term of
Eq. 1 refer to a diffusion step and a reconfiguration step, rather
than a two-step reaction that occurs after binding (26, 37).

CHA Mutations Induce Many Small Perturbations in H-Bond Transition
Rates. We focus on the fibril growth of the hydrophobic core of
Aβ (Aβ16–22, K16LVFFAE22), which is among the shortest se-
quences that form fibrils similar to those of full-length Aβ
(38–40). All possible register states can be enumerated using a
notation similar to our previous work (27) (Fig. 2 and SI Appendix,
Fig. S2). A large number of 50-ns explicit solvent simulations were
deployed to derive H-bond transition rates (Methods and SI Ap-
pendix, Table S1), which enables more realistic rates and allows
better description of peptide conformational fluctuations. It turns
out that explicit treatment of solvent also necessitates the in-
clusion of a type of transition between registered states, to account
for conformational changes that occur at time scales comparable
to those of H-bond formation and breakage (Methods). These
transitions will also be necessary when extending the current
framework to longer peptides.
As summarized in SI Appendix, Fig. S3, the effects of CHA

mutations are not localized to the mutation site; instead, many
H-bond transition kinetics are either increased or decreased. This
is similar to our observations in the implicit solvent model (27).
Thus, the impact of replacing phenylalanine (PHE) by CHA on
fibril growth could not be directly inferred by changes in H-bond
transition rates, but should be attributed to an accumulation of
small effects during fibril growth.

Fig. 1. Schematic illustration of the random walk model of fibril growth
with key kinetic parameters required for calculating the growth rate. The
incoming peptide migrates from solvent to a separation distance b with a
time τdiff (first stage). Then within τresidence, it explores multiple non-
registered (blue box) and registered states (green box) (second and third
stage). The peptide is considered to return to the bulk solvent if it reaches
the q surface. Pcommittor is the probability of the peptide arriving at the fully
bound in-register state (the red path).
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States without β-Sheet Order Serve as a Kinetic Hub. The non-
registered states do not have an identifiable β-sheet alignment
and are not included in our original theory (26). However, our
implicit solvent simulations showed that they served as a hub
connecting β-sheet registries as well as the disassociated state
(27). The implicit solvent treatment did not capture the details of
nonregistered states and they were agglomerated into a single
“nonspecific state.” Explicit solvent simulations revealed that
many nonregistered substates exist, and they play distinct roles in
mediating fibril growth (Methods). For Aβ16–22, clustering anal-
ysis identified 15 distinct macrostates (Fig. 3), only 3 of which
were found close to the docking face of the fibril and connected
to registered states. The average transition rates between non-
registered states (∼1 ns) are faster than the average formation
rate of the first H-bond pair. The transitions between registered
states and the three connected nonregistered states occur in ∼2
to 6 ns. This suggests that the incoming peptide visits many
nonregistered states before forming the first pair of hydrogen
bonds. In addition, for a specific nonregistered state, all transi-
tions to registered states can be fitted to the same single-
exponential function (SI Appendix, Fig. S5), which suggests the
transition rate between nonregistered states and the registered
states are independent of orientation (antiparallel or parallel) or
residue sidechains and only depend on the properties of the
nonregistered state (position, peptide conformation, etc.). Thus,
a uniform H-bond formation/breakage transition rate was used
for each nonregistered state.

MSM Captures the Binding Lifetimes of Different Registries. The final
MSM was tested by comparing the calculated lifetimes with re-
sults derived directly from unrestrained atomistic simulations for
three fully H-bonded antiparallel registries. The results (SI Ap-
pendix, Fig. S6) show a good agreement between MSM and di-
rect atomistic simulations. Next, we applied the MSM to analyze
the effects of PHE-to-CHA mutations on the registry lifetimes.
As summarized in SI Appendix, Fig. S6 the effects of the single
and double CHA mutations are similar on each registry, although
the magnitudes of lifetime changes are different. For both mutations,

the time of one in-register state “antiparallel e|e|0” is increased
and the lifetime for the other in-register state “antiparallel o|o|0”
is decreased. Also, three antiparallel misregistered states have
longer lifetimes for mutated peptides, and three other mis-
registered states have shorter lifetimes. As such, the net effects of
mutations on the overall fibril growth kinetics is not obvious from
the registry lifetimes. Instead, it is necessary to examine the en-
semble of MSM trajectories to account for the many effects of the
mutations.

Expanded MSM Recapitulates Mutational Effects and Solubility
Concentrations. To derive the overall fibril growth kinetics, 10,000
MSM simulations were performed, with 5,000 each on the even and
odd faces of the fibril core, to calculate τresidence and Pcommittor

Fig. 2. Backbone H-bonding interactions and states in fibril growth of Aβ16–22. (A) A preformed Aβ16–22 fibril has two faces, odd and even, for templating
β-sheet formation of an incoming peptide. (B) Illustration of the H-bonding network of the in-register state antiparallel e|e|0. (C) Illustration of all transitions
of an incoming peptide with the H-bonding pair 19–19 restrained. Note that internal conformational states of the incoming peptide (extended and coil) are
explicitly included. ALA, alanine; GLU, glutamine; LEU, leucine; LYS, lysine; VAL, valine.

Fig. 3. Nonregistered states identified from kinetic clustering. The simula-
tion trajectories were clustered based on time-lagged independent compo-
nent analysis (tICA). The states are projected on first two tICAs. The three
clusters connected to registered states are colored in black, green, and red.
Representative conformations (cluster centers) of the incoming peptide (red)
and on the fibril surface (cyan) are shown. Note, as the cluster is based on
three-dimensional tICA, some clusters are covered by other clusters and do
not show up in the 2D projection.
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(Eq. 1). Each simulation was initiated from the separation dis-
tance b and terminated when the incoming strand reached the
antiparallel fully H-bonded in-register state or the escape distance
q. Pcommittor was calculated as the probability of MSM trajectories
reaching the fully H-bonded in-register state, and τresidence is the
average length of all trajectories (Fig. 1B). To calculate τoff, an-
other set of 10,000 MSM simulations was initiated from the an-
tiparallel in-register fully bound state and performed until the
strand reached the escape distance q. Pcommittor is nearly doubled
compared with our previous study with implicit solvent and a
single agglomerated nonregistered state (Table 1). This suggests
the in-register states are more stable for Aβ16–22 in the explicit
solvent model. In addition, both τresidence and τoff are increased by
2 to ∼3 orders of magnitude from the previous study due to the
increased residence time of each state (Table 1).
To compare with experimental results, the elongation rate as a

function of monomer concentration is estimated. The diffusion
time (τdiff; Eq. 1) is estimated as τdiff = 1/kcoll Cmonomer, in which
Cmonomer is concentration of peptide monomer and kcoll is col-
lision rate constant. The kcoll is defined as kcoll = 4πσDmonomer, in
which σ is the reaction cross section (b surface in our simulation,
28 Å), and Dmonomer is the diffusion coefficient (determined
from experiments to be 1.7 × 10−6 cm2/s) (13). The results,
plotted in Fig. 4, reveal that the critical concentration (Cc) of
peptide monomer from the MSM is ∼8 μM, which is close to the
experimental result of ∼33 μM (41). The ability of the current
multiscale modeling approach to recapitulate the critical con-
centration to a factor of ∼4 without any adjustable parameters is
noteworthy, particularly considering the comprehensive de-
scription of the conformational search process. This also likely
reflects significant improvements of explicit solvent force fields
made in recent years (42, 43).
To further investigate the influence of mutations, we examine

the origin of the change in elongation rate for the mutated
peptides. The increased growth rate of the mutants is due to a
decrease of τresidence, which in turn, arises from destabilizing two
main trap states, “parallel o|o|0” and “parallel e|o|−2” (SI Ap-
pendix, Table S3). Although the relative free-energy of registered
states between the CHA19 and CH1920 double mutation is
similar, the double mutation also leads to a decrease in the resi-
dence time of in-registered states (SI Appendix, Table S2), which
leads to a faster dissociation rate (smaller τoff) and a decrease in
the growth rate.
Experimental studies have suggested that CHA mutations at

the 19 and 20 positions have nonadditive effects on overall ag-
gregation kinetics (the growth rate: wild type [wt] << CHA19 <
CHA1920 < CHA20 under high monomer concentration [>40
μM]) (41). However, this result could not be directly explained
by thermodynamic effects of the mutations, which appear to
have an additive effect (the ΔΔG with respect to wt for CHA19,
CHA20, and CHA1920 are 0.2, −0.2, and 0.0 kcal mol−1, re-
spectively). To investigate the influence of mutations, MSM
simulations of CHA mutants were performed. In the initial high
monomer-concentration condition, both CHA19 and CHA1920
exhibited significant kinetic enhancement in fibril elongation
(Fig. 4), in agreement with experiments (41). This corresponds to
the initial stage (0 to 2 h) characterized by a fast decrease in the

monomer concentration. This rapid aggregation reduces the
monomer concentration, leading to an increase of τdiff, which, in
turn, leads to a decrease of kgrowth. When the monomer is further
depleted, the growth rate approaches zero as the monomer ap-
proaches the Cc (41).
Fig. 4 shows a saturation in the growth rate at high concen-

tration as the system transitions from diffusion-limited to reaction-
limited. This saturation has been observed in the elongation of
insulin fibrils (20). In this regime, new molecules tend to arrive at
the fibril ends before the previous molecule has completed the
search for the in-register state (26). The nonlinearity in the growth
rate as a function of concentration indicates that incorrectly bound
molecules inhibit further elongation, presumably by offering a
poor surface for binding. An alternative to the saturation behavior
is that misregistered molecules become incorporated in the fibril
as defects (44). These two outcomes could be distinguished in a
simulation by attempting to dock a new protein while the previous
one is still misregistered and comparing the residence time to the
diffusion time. Experimentally, this could be achieved by mea-
suring the elongation rate (absent nucleation effects; ref. 45) in the
concentration regime where Fig. 4 shows nonlinearity.

Discussion
The Aggregation Process Is Not Guided by the Free-Energy Landscape.
To investigate the association/dissociation pathways, all MSM
trajectories were combined and the relevant free energy of each
H-bonding state was plotted. This reveals rough free-energy
landscapes with numerous local minima (Fig. 5). Importantly,
there is no obvious bias to the landscape to guide the system to-
ward the in-register states. Biased landscapes, often described as
the funnel model, are necessary for proteins to navigate the
overwhelming conformational space as they fold to their native
state (46, 47). Without a bias to guide the search, amyloids must
exhaustively search the alignment space in order to match the fi-
bril template. This is possible, albeit slow, because of the relative
simplicity of the cross-β structure. The free-energy difference be-
tween the in-register substates and misregistered substates are <5
kcal/mol. Indeed, the ratio of misregistered states in amyloid is
much higher than the misfolded trapped states observed in natural
proteins (48, 49). Although the in-register states are more ther-
modynamically stable (Fig. 5), to reach these states, an incoming
Aβ16–22 peptide needs to visit different misregistered states an
average of ∼22 times before it forms the fully bound in-register
states.
The lack of a funnel landscape is not surprising. Pathological

aggregates do not confer a fitness advantage; thus, there is no
reason to expect these molecules to have evolved efficient ag-
gregation pathways. The funnel model helps to understand the
result of our previous paper that the mutational effects could not
be attributed to a few specific states or pathways (27). The dom-
inance of a small number of states or pathways is the expected
outcome from an efficient search through a funnel-like landscape.
Conversely, in the absence of an efficient pathway, the system will

Table 1. Key kinetic parameters of fiber growth derived
from MSM

Wt CHA19 CHA1920

Pcommittor 0.87 ± 0.08 0.88 ± 0.09 0.90 ± 0.02
τresidence, ns 1,359.0 ± 56.6 546.2 ± 12.2 588.9 ± 1.25
τoff, ns 40,012 ± 515 41,733 ± 836 23,086 ± 522

Data are means ± SD.

Fig. 4. Predicted net growth rate of Aβ16–22 fibril as a function of the
peptide concentration. Results for the wt, CHA19, and CHA1920 Aβ16–22 are
presented as black solid trace, red dotted trace, and blue dash trace,
respectively.
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randomly sample states throughout the conformational ensemble.
This means that the net effect of the mutations will necessarily be
the accumulation of perturbations throughout the conformational
space. A related question is what the free-energy landscape would
look like for a functional amyloid (2). An interesting hypothesis
for this scenario arises from recent work showing that functional
amyloids form weaker steric zippers (50). While this would not
bias the landscape toward more aligned registries, the weaker
bonds would smooth out the landscape and facilitate the search by
minimizing the depth of the free-energy traps.

Misregistered States Compete with In-Register States. SI Appendix,
Table S3 shows the free energies for each registry, as estimated
from the fraction of time each state was occupied in the MSM.
For each molecule, the free energies are measured relative to the
lowest occupancy registry. In the wt Aβ16–22 peptides, two mis-
registered states, parallel o|o|0 and parallel e|o|−2, were found
to have similar free energy compared with the in-register states
(SI Appendix, Table S3). We offer two mechanisms to explain the
dominance of the antiparallel in-register states over these low
energy states in the fibril. First, electrostatic interactions will
disfavor parallel states due to the close proximity of both terminal
and sidechain charges. The repulsion due to the amino- and
carboxyl-terminal charges will be reduced somewhat for molecules
at the fibril ends because fluctuations in the binding states will
allow the charges to separate. However, when the next molecule
attaches, those termini will get pinned down, resulting in the full
electrostatic repulsion. This effect is amplified with each addi-
tional parallel molecule that is added. The electrostatic contri-
bution from the termini becomes less important with increasing
protein length, which explains the parallel structures of full-length
Aβ, IAPP, and others. In addition, mutations which weaken these
repulsions may allow these nonproductive pathways to dominate
fibril assembly. This assumption is consistent with NMR experi-
ments showing that the E22Q mutation leads to parallel fibrils
(51). Interestingly, this mutation is the same as the Dutch mutant
of full-length Aβ peptide, which enhances the aggregation
propensity (52).
Secondly, while misregistered states, like parallel e|o|−2, bind

with high affinity, they may offer a poor template for subsequent
fibril growth. An out-of-register shift will result in overhanging
amino acids that will bind poorly to subsequent molecules due to
the conformational entropy penalty of immobilizing the flexible
residues (53). However, under conditions conducive to rapid growth
(e.g., when the monomer concentration is high), these registry de-
fects may be trapped within the growing fibril by subsequent
monomer addition (44).

MSM Trajectories Show a Molecular Mechanism of Amyloid
Formation. For further insight, we examine a representative tra-
jectory in Fig. 6A, which starts from the dissociated state, reaches
the fully bound in-register state, and eventually returns to the
dissociated state. In this trajectory, the locking step of the Dock
and Lock model occurs in the initial 4 μs. This period is char-
acterized by many rapid transitions between nonregistered states
(cyan dots) separated by long periods in misregistered β-sheet
states (yellow). The residence time in this stage is dominated by
misregistered states (>98%). The end of the locking step (4 μs)
begins a long period of stability marked by only small fluctua-
tions from the fully bound state. However, eventually (∼7 μs),
there is a fluctuation large enough to remove it from the in-
register state, and the molecule finally dissociates. This trajec-
tory shows many events where the molecule briefly detaches from
the fibril (red dots) before reattaching. These multiple attempts at
finding the in-register state explain the large values of Pcommittor
(Table 1) and show why molecules reaching the docked state are
much more likely to proceed to the locked states than fail to
incorporate.
The overall mechanism is depicted schematically in Fig. 6B.

The assembly pathway is highlighted by the purple arrow. This
pathway includes the diffusion step, initial contact with the fibril
in the non–β-sheet state, and the formation of an in-register
β-sheet. However, the molecule spends less than 0.1% of its time
on this pathway, instead spending most of the time in off-pathway
traps. Of these, the most significant, by far, are the misregistered
β-sheets (yellow in Fig. 6). These states are deep free-energy wells
(Fig. 5) because of the translational symmetry of the peptide
backbone. These traps become deeper for increasing peptide
length, leading to exponential increases in the aggregation time
(45). These long trap lifetimes have been previously compared
with glassy systems (54). While these off-pathway states slow
fibril growth, they also inhibit dissolution by binding departing
peptides (∼200 times on average in a single dissociation MSM
trajectory). The resulting long τoff is consistent with the experi-
mental result that the locking stage is nearly irreversible (11). The
off-pathway states without β-sheet contact, in contrast, are an in-
significant contribution to the overall aggregation time (dark blue
in Fig. 6). However, they are important in keeping the molecule in
close proximity to the fibril. Finally, the hub states (teal in Fig. 6)
play a crucial role in facilitating assembly. These states are similar
to the non-β traps morphologically, but play a special role because
they are close enough to the fibril end to allow direction conver-
sion to and from β-sheet states.
Based on these results, we can speculate on how the assembly

mechanism might change for longer peptides such as Aβ1–42. A

Fig. 5. The free-energy landscape of Aβ16–22 fibril growth. The free energy is derived from all MSM trajectories and measured relative to the substate
antiparallel e|e|0 with free chain length [FCL] 6 (i.e., with only one H-bond pair formed at either terminus). The two in-registered states antiparallel e|e|0 and
antiparallel o|o|0 are highlighted in red. The fully bound antiparallel e|e|0 state is labeled with a red asterisk. The Inset shows the detail of the region where
the growth curve of wt and mutated peptides are diverged.
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major difference with longer molecules is their ability to fold in
the solution state. One line of thought is that adoption of the
aggregated conformation in the solution state promotes aggre-
gation (55–58). Based on the mechanism observed in our simu-
lations, we believe this hypothesis is unlikely. This is because the
formation of tertiary contacts would inhibit the conformational
flexibility needed to sample the registry space; trapping segments
of the backbone in β-conformation would prevent it from peeling
off the template one residue at a time. This means that much

larger energy fluctuations would be required to rectify alignment
errors. Therefore, formation of ordered fibrils is most likely from
peptides that are disordered in the monomer state. However,
adoption of the aggregated state will be beneficial for fibril
nucleation (53).

Conclusion
Functional proteins have evolved to develop efficient folding
pathways where a funnel-shaped free-energy landscape reduces
the time spent exploring nonproductive states. This evolutionary
pressure does not exist for nonfunctional states like pathological
aggregates. In these cases, the free-energy landscape would more
closely resemble a golf course (47) or an inverted funnel (44).
Without the guidance of a biased landscape, the conformational
search will resemble a random search over numerous H-bonded
and non–H-bonded binding states. We have developed an ana-
lytic theory-motivated, multiscale simulation strategy to derive
a comprehensive description of productive and nonproductive
pathways in the fibril growth of Aβ16–22. Without any free pa-
rameters, these descriptions quantitatively reproduce the critical
fibril growth concentrations and recapitulate the effects and
nonadditivity of CHA19 and CHA20 mutations on the growth
kinetics. The results reveal that, instead of finding a few domi-
nant pathways or intermediate states, the effects of mutations
emerge from the accumulation of small perturbations over the
ensemble of partially bound states. This recognition poses chal-
lenges for computational methods, which must sample both
productive and nonproductive pathways to generate meaningful
predictions. We note that majority of modeling treatments of
fibril growth to date use pure MD simulations (56–58). They are
limited in the conformational search processes that can be ex-
plored, even with coarse-grained treatment and/or enhanced
sampling techniques. The current work demonstrates how in-
sights from analytic theory can be utilized to meet this challenge
by inspiring sampling techniques that can access new time scales
and provide a more complete understanding of fibril growth.

Methods
A total of 719 μs of explicit solvent simulations in the CHARMM36m all-atom
force field (59, 60) was performed to derive the microscopic kinetic param-
eters for transition among all H-bonded and nonspecific bound states. See SI
Appendix, Supporting Text for detailed simulation and analysis procedures.

Data Availability Statement. The script for Markov State simulation of fibril
growth as well as the transitionmatrix for thewt Aβ16–22 peptide are available
from GitHub (https://github.com/zhiguangjia/MSM-model-for-amyloid-). The
CHARMM scripts for atomistic simulation, analysis, clustering, and kinetic
analysis are available upon request.
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